Problem

Source: IMO ShortList 1991, Problem 14 (POL 3)

Tags: modular arithmetic, number theory, quadratics, Perfect Square, Discriminant, IMO Shortlist



Let $ a, b, c$ be integers and $ p$ an odd prime number. Prove that if $ f(x) = ax^2 + bx + c$ is a perfect square for $ 2p - 1$ consecutive integer values of $ x,$ then $ p$ divides $ b^2 - 4ac.$