Problem

Source: Austrian Mathematics Olympiad Regional Competition 2020, problem 1

Tags: algebra, Austria



Let $a$ be a positive integer. Determine all $a$ such that the equation $$ \biggl( 1+\frac{1}{x} \biggr) \cdot \biggl( 1+\frac{1}{x+1} \biggr) \cdots \biggl( 1+\frac{1}{x+a} \biggr)=a-x$$has at least one integer solution for $x$. For every such $a$ state the respective solutions. (Richard Henner)