Problem

Source: 2020 Taiwan APMO Preliminary

Tags: algebra, inequalities, Inequality



Let $a,b,c$ be positive reals. Find the minimum value of $$\dfrac{13a+13b+2c}{2a+2b}+\dfrac{24a-b+13c}{2b+2c}+\dfrac{(-a+24b+13c)}{2c+2a}$$. (1)What is the minimum value? (2)If the minimum value occurs when $(a,b,c)=(a_0,b_0,c_0)$,then find $\frac{b_0}{a_0}+\frac{c_0}{b_0}$.