Problem

Source: IMO Shortlist 1994, A5

Tags: function, induction, algebra, functional equation, IMO Shortlist



Let $ f(x) = \frac{x^2+1}{2x}$ for $ x \neq 0.$ Define $ f^{(0)}(x) = x$ and $ f^{(n)}(x) = f(f^{(n-1)}(x))$ for all positive integers $ n$ and $ x \neq 0.$ Prove that for all non-negative integers $ n$ and $ x \neq \{-1,0,1\}$ \[ \frac{f^{(n)}(x)}{f^{(n+1)}(x)} = 1 + \frac{1}{f \left( \left( \frac{x+1}{x-1} \right)^{2n} \right)}.\]