Problem

Source: IMEO 2020 Problem 5

Tags: IMEO, number theory, function



For a positive integer $n$ with prime factorization $n = p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ let's define $\lambda(n) = (-1)^{\alpha_1 + \alpha_2 + \dots + \alpha_k}$. Define $L(n)$ as sum of $\lambda(x)$ over all integers from $1$ to $n$. Define $K(n)$ as sum of $\lambda(x)$ over all composite integers from $1$ to $n$. For some $N>1$, we know, that for every $2\le n \le N$, $L(n)\le 0$. Prove that for this $N$, for every $2\le n \le N$, $K(n)\ge 0$. Mykhailo Shtandenko