Problem

Source: IMEO 2020 Problem 4

Tags: IMEO, game, permutations



Anna and Ben are playing with a permutation $p$ of length $2020$, initially $p_i = 2021 - i$ for $1\le i \le 2020$. Anna has power $A$, and Ben has power $B$. Players are moving in turns, with Anna moving first. In his turn player with power $P$ can choose any $P$ elements of the permutation and rearrange them in the way he/she wants. Ben wants to sort the permutation, and Anna wants to not let this happen. Determine if Ben can make sure that the permutation will be sorted (of form $p_i = i$ for $1\le i \le 2020$) in finitely many turns, if a) $A = 1000, B = 1000$ b) $A = 1000, B = 1001$ c) $A = 1000, B = 1002$ Anton Trygub