Problem

Source: IMEO 2020 Problem 3

Tags: IMEO, functional equation, algebra



Find all functions $f:\mathbb{R^+} \to \mathbb{R^+}$ such that for all positive real $x, y$ holds $$xf(x)+yf(y)=(x+y)f\left(\frac{x^2+y^2}{x+y}\right)$$. Fedir Yudin