$ ABCD$ is a terahedron: $ AD+BD=AC+BC,$ $ BD+CD=BA+CA,$ $ CD+AD=CB+AB,$ $ M,N,P$ are the mid points of $ BC,CA,AB.$ $ OA=OB=OC=OD.$ Prove that $ \angle MOP = \angle NOP =\angle NOM.$
Problem
Source: IMO ShortList 1991, Problem 7 (CHN 2)
Tags: geometry, 3D geometry, tetrahedron, rhombus, IMO Shortlist