A 3-dimensional chess board consists of $ 4 \times 4 \times 4$ unit cubes. A rook can step from any unit cube K to any other unit cube that has a common face with K. A bishop can step from any unit cube K to any other unit cube that has a common edge with K, but does not have a common face. One move of both a rook and a bishop consists of an arbitrary positive number of consecutive steps in the same direction. Find the average number of possible moves for either piece, where the average is taken over all possible starting cubes K.
Problem
Source: Finalround Problem 8
Tags: geometry, 3D geometry, combinatorics unsolved, combinatorics