Problem

Source: Bulgaria National Olympiad 2020

Tags: geometry



On the sides of $\triangle{ABC}$ points $P,Q \in{AB}$ ($P$ is between $A$ and $Q$) and $R\in{BC}$ are chosen. The points $M$ and $N$ are defined as the intersection point of $AR$ with the segments $CP$ and $CQ$, respectively. If $BC=BQ$, $CP=AP$, $CR=CN$ and $\angle{BPC}=\angle{CRA}$, prove that $MP+NQ=BR$.