Problem

Source: The francophone mathematical olympiads P1

Tags: geometry, incircle, Francophone, sharky-devil



Let $ABC$ be an acute triangle with $AC>AB$, Let $DEF$ be the intouch triangle with $D \in (BC)$,$E \in (AC)$,$F \in (AB)$,, let $G$ be the intersecttion of the perpendicular from $D$ to $EF$ with $AB$, and $X=(ABC)\cap (AEF)$. Prove that $B,D,G$ and $X$ are concylic