Problem

Source: 2019 RMM Shortlist G1

Tags: geometry, circumcircle, Circumcenter, median



Let $BM$ be a median in an acute-angled triangle $ABC$. A point $K$ is chosen on the line through $C$ tangent to the circumcircle of $\vartriangle BMC$ so that $\angle KBC = 90^\circ$. The segments $AK$ and $BM$ meet at $J$. Prove that the circumcenter of $\triangle BJK$ lies on the line $AC$. Aleksandr Kuznetsov, Russia