Problem

Source: Tournament of Towns, Junior A-Level Paper, Spring 2020 , p7

Tags: combinatorics, game, remainder



Gleb picked positive integers $N$ and $a$ ($a < N$). He wrote the number $a$ on a blackboard. Then each turn he did the following: he took the last number on the blackboard, divided the number $N$ by this last number with remainder and wrote the remainder onto the board. When he wrote the number $0$ onto the board, he stopped. Could he pick $N$ and $a$ such that the sum of the numbers on the blackboard would become greater than $100N$ ? Ivan Mitrofanov