Find all functions $f\colon \mathbb{R}\to\mathbb{R}$ such that \[f(x + y) + f(x + z) - f(x)f(y + z) \ge 1\]for all $x,y,z \in \mathbb{R}$
Source:
Tags: function, algebra
Find all functions $f\colon \mathbb{R}\to\mathbb{R}$ such that \[f(x + y) + f(x + z) - f(x)f(y + z) \ge 1\]for all $x,y,z \in \mathbb{R}$