Problem

Source: 239 2014 S8

Tags: graph theory, combinatorics



Prove that the for all $n>1000$, we can arrange the number $1,2,\dots, \binom{n}{2}$ on edges of a complete graph with $n$ vertices so that the sum of the numbers assigned to edges of any length three path (possibly closed) is not less than $3n-1000log_2log_2 n$.