Problem

Source: 239 2014 S6

Tags: algebra, inequlity



Given posetive real numbers $a_1,a_2,\dots,a_n$ such that $a_1^2+2a_2^3+\dots+na_n^{n+1} <1.$ Prove that $2a_1+3a_2^2+\dots+(n+1)a_{n}^n <3.$