Denote every permutation of $1,2,\dots, n$ as $\sigma =(a_1,a_2,\dots,n)$. Prove that the sum $$\sum \frac{1}{(a_1)(a_1+a_2)(a_1+a_2+a_3)\dots(a_1+a_2+\dots+a_n)}$$taken over all possible permutations $\sigma$ equals $\frac{1}{n!}$.
Source: 239 2017 J1
Tags: combinatorics, permutations
Denote every permutation of $1,2,\dots, n$ as $\sigma =(a_1,a_2,\dots,n)$. Prove that the sum $$\sum \frac{1}{(a_1)(a_1+a_2)(a_1+a_2+a_3)\dots(a_1+a_2+\dots+a_n)}$$taken over all possible permutations $\sigma$ equals $\frac{1}{n!}$.