Let $a,b,c>0$ and $a^2+b^2+c^2=3$ . Prove that $$ \frac{a(a-b^2)}{a+b^2}+\frac{b(b-c^2)}{b+c^2}+\frac{c(c-a^2)}{c+a^2}\ge 0.$$
Source: 2017 Saudi Arabia JBMO TST 3.1
Tags: inequalities, algebra
Let $a,b,c>0$ and $a^2+b^2+c^2=3$ . Prove that $$ \frac{a(a-b^2)}{a+b^2}+\frac{b(b-c^2)}{b+c^2}+\frac{c(c-a^2)}{c+a^2}\ge 0.$$