parmenides51 wrote:
Let $a,b,c>0$ and $abc=1$ . Prove that $$ \sqrt{2(1+a^2)(1+b^2)(1+c^2)}\ge 1+a+b+c.$$
Solution
Prove that for any real numbers $a,b,c:$$$ \sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\ge a+b+c+ab+bc+ca-1-abc \ge 1+a+b+c. $$