Problem

Source: IMO LongList 1967, Romania 4

Tags: trigonometry, algebra, Trigonometric Equations, geometry, IMO Shortlist, IMO Longlist



(i) Solve the equation: \[ \sin^3(x) + \sin^3\left( \frac{2 \pi}{3} + x\right) + \sin^3\left( \frac{4 \pi}{3} + x\right) + \frac{3}{4} \cos {2x} = 0.\] (ii) Supposing the solutions are in the form of arcs $AB$ with one end at the point $A$, the beginning of the arcs of the trigonometric circle, and $P$ a regular polygon inscribed in the circle with one vertex in $A$, find: 1) The subsets of arcs having the other end in $B$ in one of the vertices of the regular dodecagon. 2) Prove that no solution can have the end $B$ in one of the vertices of polygon $P$ whose number of sides is prime or having factors other than 2 or 3.