Problem

Source: 239 2001 J7 S2

Tags: inequalities



For any positive numbers $ a_1 , a_2 , \dots, a_n $ prove the inequality $$\! \left(\!1\!+\!\frac{1}{a_1(1+a_1)} \!\right)\! \left(\!1\!+\!\frac{1}{a_2(1+a_2)} \! \right) \! \dots \! \left(\!1\!+\!\frac{1}{a_n(1+a_n)} \! \right) \geq \left(\!1\!+\!\frac{1}{p(1+p)} \! \right)^{\! n} \! ,$$where $p=\sqrt[n]{a_1 a_2 \dots a_n}$.