Problem

Source: IMO LongList 1967, Mongolia 6

Tags: trigonometry, algebra, series summation, Trigonometric Identities, IMO Shortlist, IMO Longlist



Prove the identity \[\sum\limits_{k=0}^n\binom{n}{k}\left(\tan\frac{x}{2}\right)^{2k}\left(1+\frac{2^k}{\left(1-\tan^2\frac{x}{2}\right)^k}\right)=\sec^{2n}\frac{x}{2}+\sec^n x\]for any natural number $n$ and any angle $x.$