Problem

Source: IMO LongList 1967, Hungary 4

Tags: analytic geometry, geometry, geometric inequality, circles, IMO Shortlist, IMO Longlist



Let $k_1$ and $k_2$ be two circles with centers $O_1$ and $O_2$ and equal radius $r$ such that $O_1O_2 = r$. Let $A$ and $B$ be two points lying on the circle $k_1$ and being symmetric to each other with respect to the line $O_1O_2$. Let $P$ be an arbitrary point on $k_2$. Prove that \[PA^2 + PB^2 \geq 2r^2.\]