Problem

Source: 2006 Romania JBMO TST2 p1

Tags: geometry, rectangle, tangent circles, circles, Circumcenter, right angle



Let $C (O)$ be a circle (with center $O$ ) and $A, B$ points on the circle with $\angle AOB = 90^o$. Circles $C_1 (O_1)$ and $C_2 (O_2)$ are tangent internally with circle $C$ at $A$ and $B$, respectively, and, also, are tangent to each other. Consider another circle $C_3 (O_3)$ tangent externally to the circles $C_1, C_2$ and tangent internally to circle $C$, located inside angle $\angle AOB$. Show that the points $O, O_1, O_2, O_3$ are the vertices of a rectangle.