The numbers $1,2,3,\dots,1000$ are written on the board. Patya and Vassya are playing a game. They take turn alternatively erasing a number from the board. Patya begins. If after a turn all numbers (maybe one) on the board be divisible by a natural number greater than $1$ the player who last played loses. If after some number of steps the only remaining number on the board be $1$ then they call it a draw. Determine the result of the game if they both play their best.