Problem

Source: 239 2015 S P6

Tags: inequalities



Positive real numbers $a,b,c$ satisfy $$2a^3b+2b^3c+2c^3a=a^2b^2+b^2c^2+c^2a^2.$$Prove that $$2ab(a-b)^2+2bc(b-c)^2+2ca(c-a)^2 \geq(ab+bc+ca)^2.$$