Problem

Source: 239 MO 2001 X-XI p3

Tags: geometry, tangent circles, equal angles, circles



The circles $ S_1 $ and $ S_2 $ intersect at points $ A $ and $ B $. Circle $ S_3 $ externally touches $ S_1 $ and $ S_2 $ at points $ C $ and $ D $ respectively. Let $ PQ $ be a chord cut by the line $ AB $ on circle $ S_3 $, and $ K $ be the midpoint of $ CD $. Prove that $ \angle PKC = \angle QKC $.