Problem

Source: 239 MO 2001 VIII-IX p5

Tags: geometry, tangent circles, circles, equal angles



The circles $ S_1 $ and $ S_2 $ intersect at points $ A $ and $ B $. Circle $ S_3 $ externally touches $ S_1 $ and $ S_2 $ at points $ C $ and $ D $ respectively. Let $ K $ be the midpoint of the chord cut by the line $ AB $ on circles $ S_3 $. Prove that $ \angle CKA = \angle DKA $.