Problem

Source: BxMO 2020, Problem 3

Tags: geometry, BxMO, Benelux



Let $ABC$ be a triangle. The circle $\omega_A$ through $A$ is tangent to line $BC$ at $B$. The circle $\omega_C$ through $C$ is tangent to line $AB$ at $B$. Let $\omega_A$ and $\omega_C$ meet again at $D$. Let $M$ be the midpoint of line segment $[BC]$, and let $E$ be the intersection of lines $MD$ and $AC$. Show that $E$ lies on $\omega_A$.