Inside triangle $ABC$, the point $P$ is chosen such that $\angle PAB = \angle PCB =\frac14 (\angle A+ \angle C)$. Let $BL$ be the bisector of $\vartriangle ABC$. Line $PL$ intersects the circumcircle of $\vartriangle APC$ at point $Q$. Prove that the line $QB$ is the bisector of $\angle AQC$.