Problem

Source: Ukrainian Geometry Olympiad 2020, X p5 , XI p4

Tags: Coloring, combinatorics, combinatorial geometry, geometry, points



On the plane painted $101$ points in brown and another $101$ points in green so that there are no three lying on one line. It turns out that the sum of the lengths of all $5050$ segments with brown ends equals the length of all $5050$ segments with green ends equal to $1$, and the sum of the lengths of all $10201$ segments with multicolored equals $400$. Prove that it is possible to draw a straight line so that all brown points are on one side relative to it and all green points are on the other.