Problem

Source: Ukrainian Geometry Olympiad 2020, XI p5

Tags: geometry, angles, geometric inequality



Inside the convex quadrilateral $ABCD$ there is a point $M$ such that $\angle AMB = \angle ADM + \angle BCM$ and $\angle AMD = \angle ABM + \angle DCM$. Prove that $AM \cdot CM + BM \cdot DM \ge \sqrt{AB \cdot BC\cdot CD \cdot DA}$