Let $k>1$ be the given natural number and $p\in \mathbb{P}$ such that $n=kp+1$ is composite number. Given that $n\mid 2^{n-1}-1.$ Prove that $n<2^k.$
Source:
Tags: number theory
Let $k>1$ be the given natural number and $p\in \mathbb{P}$ such that $n=kp+1$ is composite number. Given that $n\mid 2^{n-1}-1.$ Prove that $n<2^k.$