Given are 10 quadric equations $x^2+a_1x+b_1=0$, $x^2+a_2x+b_2=0$,..., $x^2+a_{10}x+b_{10}=0$. It is known that each of these equations has two distinct real roots and the set of all solutions is ${1,2,...10,-1,-2...,-10}$. Find the minimum value of $b_1+b_2+...+b_{10}$