Problem

Source: Balkan MO ShortList 2009 A5

Tags:



Given the monic polynomial \begin{align*} P(x) = x^N +a_{N-1}x^{N-1} + \ldots + a_1 x + a_0 \in \mathbb{R}[x] \end{align*}of even degree $N$ $=$ $2n$ and having all real positive roots $x_i$, for $1 \le i \le N$. Prove, for any $c$ $\in$ $[0, \underset{1 \le i \le N}{\min} \{x_i \} )$, the following inequality \begin{align*} c + \sqrt[N]{P(c)} \le \sqrt[N]{a_0} \end{align*}