Problem

Source: Bulgarian MO 2008, Day 1, Problem 1

Tags: geometry, circumcircle, trigonometry, angle bisector, geometry proposed



Let $ ABC$ be an acute triangle and $ CL$ be the angle bisector of $ \angle ACB$. The point $ P$ lies on the segment $CL$ such that $ \angle APB=\pi-\frac{_1}{^2}\angle ACB$. Let $ k_1$ and $ k_2$ be the circumcircles of the triangles $ APC$ and $ BPC$. $ BP\cap k_1=Q, AP\cap k_2=R$. The tangents to $ k_1$ at $ Q$ and $ k_2$ at $ B$ intersect at $ S$ and the tangents to $ k_1$ at $ A$ and $ k_2$ at $ R$ intersect at $ T$. Prove that $ AS=BT.$