Let $ABC$ be a triangle inscribed in the circle $K_1$ and $I$ be center of the inscribed in $ABC$ circle. The lines $IB$ and $IC$ intersect circle $K_1$ again in $J$ and $L$. Circle $K_2$, circumscribed to $IBC$, intersects again $CA$ and $AB$ in $E$ and $F$. Show that $EL$ and $FJ$ intersects on the circle $K_2$.