Problem

Source: https://artofproblemsolving.com/community/c6h1958463p13536764

Tags: geometry, circumcircle



Given a scalene triangle $\vartriangle ABC$ with orthocenter $H$ and circumcenter $O$. The exterior angle bisector of $\angle BAC$ intersects circumcircle of $\vartriangle ABC$ at $N \ne A$. Let $D$ be another intersection of $HN$ and the circumcircle of $\vartriangle ABC$. The line passing through $O$, which is parallel to $AN$, intersects $AB,AC$ at $E, F$, respectively. Prove that $DH$ bisects the angle $\angle EDF$.