Problem

Source: https://artofproblemsolving.com/community/c6h1958463p13536764

Tags: geometry, circumcircle, tangent circles, tangent



$\vartriangle ABC$ is a scalene triangle with circumcircle $\Omega$. For a arbitrary $X$ in the plane, define $D_x,E_x, F_x$ to be the intersection of tangent line of $X$ (with respect to $BXC$) and $BC,CA,AB$, respectively. Let the intersection of $AX$ with $\Omega$ be $S_x$ and $T_x = D_xS_x \cap \Omega$. Show that $\Omega$ and circumcircle of $\vartriangle T_xE_xF_x$ are tangent to each other.