Problem

Source: https://artofproblemsolving.com/community/c6h1958463p13536764

Tags: geometry, symmetry, orthocenter, midpoints, Concyclic



Given a scalene triangle $\vartriangle ABC$ with orthocenter $H$. The midpoint of $BC$ is denoted by $M$. $AH$ intersects the circumcircle at $D \ne A$ and $DM$ intersects circumcircle of $\vartriangle ABC$ at $T\ne D$. Now, assume the reflection points of $M$ with respect to $AB,AC,AH$ are $F,E,S$. Show that the midpoints of $BE,CF,AM,TS$ are concyclic.