Problem

Source: https://artofproblemsolving.com/community/c6h1740077p11309077

Tags: geometry, circumcircle, orthocenter, collinear



Given an acute $\vartriangle ABC$ with orthocenter $H$. Let $M_a$ be the midpoint of $BC. M_aH$ intersects the circumcircle of $\vartriangle ABC$ at $X_a$ and $AX_a$ intersects $BC$ at $Y_a$. Define $Y_b, Y_c$ in a similar way. Prove that $Y_a, Y_b,Y_c$ are collinear.