Problem

Source: Czech-Polish-Slovak Junior Match 2015, Team p5 CPSJ

Tags: inequalities, minimum, min, algebra



Find the smallest real constant $p$ for which the inequality holds $\sqrt{ab}- \frac{2ab}{a + b} \le p \left( \frac{a + b}{2} -\sqrt{ab}\right)$ with any positive real numbers $a, b$.