Problem

Source: 13th Thailand Mathematical Olympiad 2016 day 2 p8

Tags: geometry, incenter, orthocenter, parallel



Let $\vartriangle ABC$ be an acute triangle with incenter $I$. The line passing through $I$ parallel to $AC$ intersects $AB$ at $M$, and the line passing through $I$ parallel to $AB$ intersects $AC$ at $N$. Let the line $MN$ intersect the circumcircle of $\vartriangle ABC$ at $X$ and $Y$ . Let $Z$ be the midpoint of arc $BC$ (not containing $A$). Prove that $I$ is the orthocenter of $\vartriangle XY Z$