Problem

Source: 13th Thailand Mathematical Olympiad 2016 day 1 p3

Tags: functional equation, algebra, functional



Determine all functions $f : R \to R$ satisfying $f (f(x)f(y) + f(y)f(z) + f(z)f(x))= f(x) + f(y) + f(z)$ for all real numbers $x, y, z$.