Real numbers $x, y$ satisfy the inequality $x^2 + y^2 \le 2$. Orove that $xy + 3 \ge 2x + 2y$
Problem
Source: Czech-Polish-Slovak Junior Match 2015, Individual p3 CPSJ
Tags: inequalities, algebra
15.03.2020 13:09
Let $xy=a$. We have $(x+y)^2\geq0\Rightarrow 2\geq x^2+y^2\geq -2xy=-2a\Rightarrow a\geq-1\Rightarrow a+1\geq0.$ $$\Rightarrow xy+3=a+1+2\geq2\sqrt{2(a+1)}=2\sqrt{2a+2}=2\sqrt{2xy+2}\geq2\sqrt{2xy+x^2+y^2}=2|x+y|\geq2(x+y)$$
02.07.2024 12:25
With $s=x+y$, $p=xy$ we have $s^2 - 2p \leq 2$, i.e. $p \geq \frac{s^2}{2} - 1$ and wish to show $p+3 \geq 2s$, i.e. $p \geq 2s-3$. Hence it is enough to prove $\frac{s^2}{2} - 1 \geq 2s-3$, but this is equivalent to $(s-2)^2\geq 0$.
02.07.2024 14:38
Let $ x, y $ be real numbers such that $x^2 + y^2 \le 2$. Prove that $$-5 \le 2x + 2y-xy\le 3$$$$-4\le x + y-2xy\le \frac{9}{4} $$$$-3 \le x + y-xy\le\frac{3}{2} $$
02.07.2024 17:08
EmirhanYagcioglu wrote: Let $xy=a$. We have $(x+y)^2\geq0\Rightarrow 2\geq x^2+y^2\geq -2xy=-2a\Rightarrow a\geq-1\Rightarrow a+1\geq0.$ $$\Rightarrow xy+3=a+1+2\geq2\sqrt{2(a+1)}=2\sqrt{2a+2}=2\sqrt{2xy+2}\geq2\sqrt{2xy+x^2+y^2}=2|x+y|\geq2(x+y)$$ good one
02.07.2024 18:26
https://artofproblemsolving.com/community/c6h3350278p31073276
02.07.2024 20:33
Assassino9931 wrote: With $s=x+y$, $p=xy$ we have $s^2 - 2p \leq 2$, i.e. $p \geq \frac{s^2}{2} - 1$ and wish to show $p+3 \geq 2s$, i.e. $p \geq 2s-3$. Hence it is enough to prove $\frac{s^2}{2} - 1 \geq 2s-3$, but this is equivalent to $(s-2)^2\geq 0$. beautiful
03.07.2024 03:08
Let $ x, y $ be real numbers such that $x^2 +x+y+ y^2 \le 2$. Prove that $$- \frac{51+3\sqrt 5}{2} \le x + y-xy\le \frac{9}{8} $$$$- 2(2+\sqrt 5) \le x + y-2xy\le 2$$$$- \frac{5\sqrt 5+7}{2} \le 2x +2 y-xy\le\frac{5\sqrt 5-7}{2} $$