Problem

Source: Czech-Polish-Slovak Junior Match 2013, Individual p4 CPSJ

Tags: divides, divisor, number theory, Digits



Determine the largest two-digit number $d$ with the following property: for any six-digit number $\overline{aabbcc}$ number $d$ is a divisor of the number $\overline{aabbcc}$ if and only if the number $d$ is a divisor of the corresponding three-digit number $\overline{abc}$. Note The numbers $a \ne 0, b$ and $c$ need not be different.