On the circle $k$, the points $A,B$ are given, while $AB$ is not the diameter of the circle $k$. Point $C$ moves along the long arc $AB$ of circle $k$ so that the triangle $ABC$ is acute. Let $D,E$ be the feet of the altitudes from $A, B$ respectively. Let $F$ be the projection of point $D$ on line $AC$ and $G$ be the projection of point $E$ on line $BC$. (a) Prove that the lines $AB$ and $FG$ are parallel. (b) Determine the set of midpoints $S$ of segment $FG$ while along all allowable positions of point $C$.
Problem
Source: Czech-Polish-Slovak Junior Match 2012, Team p2 CPSJ
Tags: midpoint, parallel, geometry, Locus, arc