In each square of the $100\times 100$ square table, type $1, 2$, or $3$. Consider all subtables $m \times n$, where $m = 2$ and $n = 2$. A subtable will be called balanced if it has in its corner boxes of four identical numbers boxes . For as large a number $k$ prove, that we can always find $k$ balanced subtables, of which no two overlap, i.e. do not have a common box.
Problem
Source: Czech-Polish-Slovak Junior Match 2017, Team p5 CPSJ
Tags: combinatorics, table, numbers in a table