Problem

Source: Romanian Masters in Mathematics 2020, Problem 6

Tags: RMM, RMM 2020, number theory



For each integer $n \geq 2$, let $F(n)$ denote the greatest prime factor of $n$. A strange pair is a pair of distinct primes $p$ and $q$ such that there is no integer $n \geq 2$ for which $F(n)F(n+1)=pq$. Prove that there exist infinitely many strange pairs.