Let $ x$, $ y$, $ z$ be positive numbers. Find the minimum value of: $ (a)\quad \frac{x^2 + y^2 + z^2}{xy + yz}$ $ (b)\quad \frac{x^2 + y^2 + 2z^2}{xy + yz}$
Source: Croatian Team Selection Test 2008
Tags: inequalities proposed, inequalities
Let $ x$, $ y$, $ z$ be positive numbers. Find the minimum value of: $ (a)\quad \frac{x^2 + y^2 + z^2}{xy + yz}$ $ (b)\quad \frac{x^2 + y^2 + 2z^2}{xy + yz}$